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Generation of optical ‘Schrödinger cats’ from
photon number states
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Schrödinger’s cat1 is a Gedankenexperiment in quantum physics,
in which an atomic decay triggers the death of the cat. Because
quantum physics allow atoms to remain in superpositions of
states, the classical cat would then be simultaneously dead and
alive. By analogy, a ‘cat’ state of freely propagating light can
be defined as a quantum superposition of well separated quasi-
classical states2,3—it is a classical light wave that simultaneously
possesses two opposite phases. Such states play an important role
in fundamental tests of quantum theory4–7 and in many quantum
information processing tasks, including quantum computation8,
quantum teleportation9,10 and precision measurements11. Recently,
optical Schrödinger ‘kittens’ were prepared12–14; however, they are
too small for most of the aforementioned applications and increas-
ing their size is experimentally challenging. Here we demonstrate,
theoretically and experimentally, a protocol that allows the genera-
tion of arbitrarily large squeezed Schrödinger cat states, using
homodyne detection and photon number states as resources. We
implemented this protocol with light pulses containing two
photons, producing a squeezed Schrödinger cat state with a nega-
tive Wigner function. This state clearly exhibits several quantum
phase-space interference fringes between the ‘dead’ and ‘alive’
components, and is large enough to become useful for quantum
information processing and experimental tests of quantum theory.

The predictions of quantum physics for microscopic objects cannot
be simply generalized to our ‘classical’ world. In fact, the reason why
Schrödinger’s cats are so hard to prepare is the same that makes large
quantum computers so hard to build: for macroscopic systems,
quantum state superpositions rapidly decohere into statistical mix-
tures because of strong interactions with the environment. To become
feasible, Schrödinger’s Gedankenexperiment should be transposed
from a cat to a more convenient physical system, with its own ‘clas-
sical’ or ‘quasi-classical’ states. In quantum optics, they correspond to
coherent states jaæ, where a is the coherent amplitude15,16. Therefore,
a quantum superposition jyæ 5N (jaæ 1 eihj2aæ) defines a optical

cat state with a ‘size’ jaj2, where N~ 2 1z cos hð Þe{2 aj j2
� �h i{1=2

is

a normalization constant. As the phase origin is arbitrary, we will
assume in the following that a is real.

In addition to their numerous applications4–11, optical cat states
have another crucial advantage: quantum optics provide efficient
tools to tell the difference between a true quantum superposition
and a plain statistical mixture of two coherent states. Quantum states
of light, often considered in terms of photons, can also be described as
waves, using their amplitudes and phases or, in cartesian coordinates,
their quadratures x̂x and p̂p (ref. 17). A state is then characterized by
the quasi-probability distribution of its quadratures W(x, p), called
the Wigner function18. It can be reconstructed by homodyne
tomography from several marginal quadrature distributions
P x̂xh~x̂x cos hzp̂p sin hð Þ measured with a homodyne detection. As x̂x

and p̂p are not simultaneously defined in quantum physics, the Wigner
function may become negative for specific quantum states, including
optical ‘Schrödinger cats’. In this case, the Wigner function clearly
reveals the difference between a real quantum superposition and a
mere statistical mixture of the two states j6aæ: for a true superposi-
tion state, it presents a phase-space interference between the ‘dead’
(j2aæ) and ‘alive’ (j1aæ) components and takes negative values.

Such superposition states could only be observed in bound sys-
tems19,20 until, very recently, several groups succeeded in preparing
free-propagating light beams in small cat states (‘Schrödinger kit-
tens’)12–14. These experiments attracted much attention, as first steps
on a new promising way towardsquantum communication. But the size
of the ‘kittens’ accessible so far is limited to jaj2= 1, and their amp-
lification21 remains a serious experimental challenge22. On the other
hand, most quantum information processing applications require lar-
ger cats with a smaller overlap between the two coherent states: it should
be typically less than 1%, which corresponds to jaj2> 2.3.

In this letter we demonstrate, theoretically and experimentally, a
method to produce quantum superpositions of squeezed coherent
states with arbitrarily large amplitudes (see Fig. 1). These cat states are
squeezed along the x quadrature and stretched along p, which makes
them more robust against decoherence23. If needed, they can be easily
‘un-squeezed’, either by injecting them into a degenerate optical
parametric amplifier, or by mixing them with squeezed vacuum24,25.
The required squeezing, around 3 dB, is easily achievable.

The basis of our protocol is to split a photon number state (Fock
state) containing exactly n photons on a 50/50 beam splitter (BS), and
to measure the momentum quadrature p̂p in one mode. The desired
state is prepared in the other mode, under the condition that
jpj# e= 1.

An interesting insight into the structure of the prepared state is
obtained by looking at its wavefunction wn, in the limit eR0 (as we
show below, a finite e is a second-order effect that does not perturb
our experiments). Omitting the normalization factors, the wave
function of a n-photon number state in the momentum quadrature
basis is Hn pð Þe{p2=2, where Hn is the nth Hermite polynomial. Mixed
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Figure 1 | Preparing squeezed ‘Schrödinger cat’ states from Fock states
using a single homodyne detection. A photon number state containing n
photons is divided into two modes on a beam splitter with 50% reflectivity. A
homodyne detection measures the momentum quadrature p̂p in one mode. If
the measurement outcome p is close to 0 within an acceptance width
e ( | p | # e= 1), the other mode is successfully prepared in a ‘squeezed cat’
state, otherwise it is discarded. See text for details.
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with vacuum on a 50/50 BS, the two-mode wavefunction becomes
~ww p, p0ð Þ~Hn p{p0ð Þ

� ffiffiffi
2
p� �

e{ p2zp2
0ð Þ=2. If the measurement out-

come is p0 5 0, by taking the Fourier transform we see that the
un-normalized wavefunction in the position basis is simply
wn xð Þ~xne{x2=2.

For n $ 3, this state has a fidelity Fn . 99% with a ‘Schrödinger cat’
state with a size jaj2 5 n and a superposition phase h 5 np, which has
been squeezed by 3 dB along the x axis. Remarkably enough, the
quality of the prepared ‘cats’ increases with their size, as shown in
Fig. 2a. We see numerically that Fn < 1 2 0.03/n, and we rigorously
prove in the Supplementary Information that the fidelity tends to 1
when nR‘. For small n we observe a slight deviation from this
scaling law: when n 5 2, a cat state with jaj2 5 2.6 squeezed by
3.5 dB is obtained with a 99% fidelity. As an illustration, we present
in Fig. 2b the Wigner function of the pure state prepared with 10

photons, compared to an ideal cat state N
ffiffiffiffiffi
10
p ��� z {

ffiffiffiffiffi
10
p�� �	 


squeezed by 3 dB. In this case the fidelity is F10 < 99.7%.
We implemented this protocol experimentally using ultrashort

light pulses (180 fs) prepared in n 5 2 number states (see Fig. 3).
Their preparation is detailed elsewhere26. In brief, two beams contain-
ing the same number of photons (two-mode squeezed state) are pro-
duced in a spatially non-degenerate optical parametric amplifier

(OPA) by down-conversion of frequency-doubled femtosecond laser
pulses. One of them is split between two avalanche photodiodes
(APDs) after spatial and spectral filtering. A coincidence APD detec-
tion heralds the presence of at least two photons, and as the parametric
gain is not too large (g 5 1.17), this projects the other mode in a two-
photon number state.

These n 5 2 states are split on a 50/50 BS. The reflected mode is
measured by a time-resolved homodyne detection. We accept the
outcome p if jpj, 0.1, which leads to a success probability of
,7.5%. This prepares the desired ‘squeezed cat’ states in the other
mode, with a rate of ,7 s21. To analyse these states, we perform a
homodyne tomography with a second detection, measuring six differ-
ent quadrature distributions with 15,000 data points each. From these
distributions, using a maximal-likelihood algorithm, we reconstruct
the Wigner function of the prepared state corrected for the losses of the
final homodyne detection. We note that the defects of the first detec-
tion, involved in the preparation of the state, cannot be compensated.

The reconstructed Wigner function, presented in Fig. 4, is clearly
negative. We observe the expected phase-space interference between
two coherent states with amplitudes a~+

ffiffiffiffiffiffi
2:6
p

squeezed by 3.5 dB.
As shown below, the difference from the ideal ‘squeezed cat’ is essen-
tially due to technical issues.

The prepared states are very sensitive to experimental imperfec-
tions. Dark counts and stray light decrease the probability j for an
APD detection to correspond to the desired photon number state
preparation. Mode distortion in the nonlinear crystals and imperfect
laser beams lead to an impure initial two-mode squeezed state. We
can consider that the associated excess noise is added by phase-
independent parametric amplification with a gain h 5 cosh(cr)2 on
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Figure 2 | Theoretical performance. a, Fidelity F between the state produced
with n photons and an ideal Schrödinger cat with a ‘size’ | a | 2 5 n, squeezed by
3 dB. b, Example of ideal state preparation. The Wigner function of the pure
state prepared from 10 photons (left) compared with an ideal Schrödinger cat
state with a~

ffiffiffiffiffi
10
p

squeezed by 3 dB (right). Their fidelity is F10 < 99.7%.
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Figure 3 | Experimental set-up. Femtosecond pulses, frequency-doubled by
second harmonic generation (SHG), pump a spatially degenerate optical
parametric amplifier (OPA). A two-photon state is prepared in one mode by
a coincidence detection in the other, using two avalanche photodiodes
(APD). It is split between two homodyne detectors: one is used for the
preparation of the cat state, the other for the analysis (see text for details).
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Figure 4 | Experimental results. a, b, Experimental Wigner function W(x,
p) produced with n 5 2 photons, corrected for the losses of the final
homodyne detection (a, side view; b, top view). An interference between the
‘dead’ and ‘alive’ states with two negative regions is clearly visible.
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a pure two-mode state squeezed by s 5 exp(22r), where c is the
relative efficiency of the amplification process responsible for the
excess noise. The limited efficiency g and the noise e of the homodyne
detection involved in the state preparation decrease the purity of the
final state. The defects of the second detection are not involved in the
preparation but only in the analysis of the generated states, and must
be corrected for to determine the actual Wigner function.

Taking all these parameters into account, we derived an analytical
model for the generated states (see Supplementary Information).
Figure 5a presents the Wigner function obtained from our model
with the actual values of the experimental parameters, and we see it is
extremely similar to the one reconstructed from the data with the
maximal-likelihood algorithm. Figure 5b shows the Wigner function
we would obtain with pure photon number states and a lossless
detection for the same acceptance width e 5 0.1, compared to the
pure case (e 5 0). Their fidelity is 99%, which shows that our experi-
ment is limited by technical issues and not by the finite e. In a general
case, the effect of e is discussed in Supplementary Information.

Obviously, the states produced with this protocol contain at most
n photons. For example, for n 5 2, w2j i~

ffiffiffiffiffiffiffi
2=3

p
2j i{

ffiffiffiffiffiffiffi
1=3

p
0j i. It is

quite easy to see that we can prepare ‘even’ or ‘odd’ cat states, con-
taining only even or only odd photon numbers, depending on the
parity of n. Indeed, in this case the homodyne detection performs a
parity measurement: an outcome p 5 0 tells us that the number of
photons in the measured mode was even, as the overlap between the
(non-physical) state jp 5 0æ and an odd photon number state is null.
Therefore, the prepared state has the same parity as n. The homodyne
measurement also induces a phase dependence on the originally
phase-invariant state. The 3 dB of squeezing required to ‘unsqueeze’
a cat with jaj2 5 n compensate for the loss of half of the photons
on the 50/50 BS without changing the parity. Another way to intui-
tively deduce the scaling law jaj2 5 n is to notice that wn(x) presents
two peaks centred at x~+

ffiffiffi
n
p

, whereas for an ideal cat squeezed by

sc 5 1/2 (3 dB) the same two peaks are at x~+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sc aj j2

q
. In fact, we

can also prepare a cat with a slightly different size by changing sc if we
preserve the relationship n 5 2scjaj2. For example, a odd cat with
jaj2 5 9.5 can be prepared with a 99.7% fidelity using 9 photons with
sc 5 9/19. For an even cat we would use 10 photons and ‘unsqueeze’
by sc 5 10/19. Therefore, all parities and cat sizes are accessible.

We have thus proposed and experimentally demonstrated a pro-
tocol that allows the preparation of quantum superpositions of
squeezed coherent states. Considering the fast technical progress and
the increasing number of groups working in this field, we expect that

the purity of these superpositions will rapidly improve. The use of
higher parametric gains combined with number-resolving photon
counters allows the preparation of higher photon number states27,
and should give access to even larger ‘Schrödinger cats’. This simple
and flexible procedure is particularly suitable for producing these states
as ‘ancillas’ for numerous quantum information processing tasks.
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Figure 5 | Influence of experimental imperfections. a, Experimental
Wigner function (left) produced from two-photon Fock states, compared to
that obtained with our model (right). b, Wigner function produced from
pure two-photon Fock states with e 5 0.1 and no technical imperfections
(left) compared to the ideal case with e 5 0 (right).
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